
Enabling Limited Resource-Bounded 
Disjunction in Scheduling

Jagriti Agrawal, Wayne Chi, Steve Chien, Gregg Rabideau, Stephen Kuhn, and 
Dan Gaines

Copyright 2019, California Institute of Technology. Government sponsorship acknowledged. CL # 



Background

• The Mars 2020 Scheduler is a (Rabideau and Benowitz 2017)
• single-shot, non-backtracking scheduler that 
• schedules in priority first order and 
• never removes or moves an activity after it is placed during a 

single scheduler run. 
• Activities are not preempted
• It does not search except for

• Valid intervals calculations
• sleep and preheat scheduling

2



Challenge

• Working with a very computationally limited scheduler that does not 
backtrack

• Conservative estimate of 60 seconds to run
• How can we get more out of the scheduler and improve the final 

schedule given that the scheduler highly computationally limited?

3



Goal
• Primary goal is to schedule all mandatory activities- high priority activities that must be scheduled
• Would also like to schedule certain preferred activities as long as doing so does not prevent any 

mandatory activities from being scheduled
• Grouping of activities into switch groups

• Switch Group- set of activities where exactly one of the activities in the set must be scheduled
• Activities within a switch group are called switch cases
• Generally, switch cases differ only by the amount of resources (time, energy, data volume) they 

consume
• Goal is to schedule more resource-consuming switch case without dropping another 

mandatory activity from the schedule
• Challenge- scheduler is non-backtracking, no search, uses a greedy algorithm to place 

activities
• Example:

• Must schedule one of A, B, or C
• Would like to schedule C if does not force another mandatory out of schedule

4

SwitchGroup = 

Activity A = 100 sec

Activity B = 200 sec

Activity C = 400 sec 



• During execution, activities may end earlier and free up resources
• How can we use extra resources to schedule more preferred switch case without 

dropping another mandatory activity?
• Methods:

• Guard Methods: When scheduling switch cases, reserve enough sensitive 
resources (time, energy, data volume) to schedule remaining mandatory activities

• For switch groups this means that resources will be reserved for the least 
resource consuming (minimum) activity

• A) Fixed Point Guard
• B) Sol Wide Guard (Sol- Martian Day)

• All computations done offline

• MSI (Multiple Scheduler Invocation)
• During execution, trigger a special process (MSI) that reinvokes the scheduler multiple 

times, once for each level of the switch group
• Only considers the next switch case (in terms of time)
• Emulates backtracking at a very limited scale

5

Various Methods to Schedule Switch Groups



Two Types of Guard Methods

• Both methods guard for unscheduled activities after (scheduling order) the switch case regardless 
of when they will be executed, e.g. they are scheduled in a later loop of the scheduler but 
temporally before the switch group

• Ex) Switch Group: B1 < B2 < B3, Scheduling Order: A, B1, C, D, E (not necessarily same as order 
of temporal placement)

• Fixed Point

• Sol Wide 
• Guards for energy by keeping track of the energy balance in the entire sol versus at a fixed 

point

• The way these two methods guard for time is the same, they differ in how they guard 
for energy

• All computations to find values for guard constraints are done offline, and they are 
applied while scheduling during execution

6

EDCB1A

Energy value at fixed time

EDCB1A

How much energy is needed to schedule remaining mandatories



Assumptions

• Nominal Plan = resulting plan after scheduling with only the 
least resource consuming (minimal) switch case

• All activities have original, conservative duration
• Should schedule all mandatory activities for guards to be viable

• Fixed Point- heavily based on assumption that activities will 
execute in same order as they were scheduled in Nominal 
Plan

• Sol Wide- Often, it is ok if order of execution order is different 
from scheduling order in nominal plan since we look at energy 
balance throughout the whole sol, not at a fixed point

7



Guarding Against Time (Same for both Guard 
Methods)- Option 1

• Nominal Plan = plan after scheduling with only nominal 
(minimal) switch cases and nominal durations, should 
schedule all mandatory activities

• Nominal_t = time at which minimal switch case is scheduled to 
end execution in nominal plan

• Set execution time constraints (latest allowed start time) so 
that B2 or B3 must end by Nominal_t

EDCB1
B2

B3

A

Nominal_t

8



Guarding Against Time With Preferred Time-
Option 2
• Nominal Plan = plan after scheduling with only nominal (minimal) switch cases, should 

schedule all mandatory activities
• Before generating the nominal schedule, set preferred time of nominal switch case to its 

latest start time given by execution time constraint
• à Scheduler will try to schedule nominal switch case as late as possible in the nominal 

schedule 
• à Longer switch cases may have later latest start times, allowing for wider execution window

• Nominal_t_pref = time at which minimal switch case is scheduled to end execution in 
nominal plan using the set preferred time

• Set execution time constraints so that B2 or B3 must end by Nominal_t_pref
• Note: We DO NOT set a preferred time for B2 or B3, the scheduler will still try to schedule 

them as early as possible

EDCB1
B2

B3

A

Nominal_t_pref

9



Guarding Against Time with Preferred Time-
Caveat

• Possible for mandatories to be dropped when we set preferred time 
of minimum switch case to be latest start time

• M and B1 cannot overlap due to resource conflicts
• If nominal switch case is placed as late as possible, it could use up 

time from another mandatory activity with a tight execution window 

TB_earliest_start

B1 M

10

TB_latest_start = TB_preferred_start

TM_earliest_start TM_latest_start



Fixed Point Guard Minimum SOC

• Minimum SOC- State of charge cannot go below this value at any 
point during scheduling or execution

• Nominal Plan = plan after scheduling with only nominal (minimal) 
switch cases, should schedule all mandatory activities

• SOC_guard_t = time at which minimal switch case is scheduled to 
end execution in nominal plan

• SOC_guard_val = State of charge value at time SOC_guard_t

• Energy value cannot go below SOC_guard_val at time SOC_guard_t

EDCB1
B2

B3

A

Time: SOC_guard_t
Energy Guard Val: 
SOC_guard_val

11



Fixed Point Guard Handover SOC

• Handover time- in effect, time at which next schedule starts
• Handover SOC- state of charge cannot go below this value at 

handover time
• Nominal Plan = plan after scheduling with only nominal (minimal) 

switch cases, original durations, should schedule all mandatory 
activities

• Find how much extra energy is left at handover time after 
scheduling all activities in Nominal Plan

• Energy leftover = Energy(Handover_time) – MINIMUM_HANDOVER_SOC

• Make sure extra energy needed to schedule longer switch case 
does not exceed energy left over

• If it does, do not schedule switch case

12



Sol Wide Guard- Handover SOC Guard
• How much energy is needed to schedule remaining mandatory activities?
• Maximum SOC- Energy cannot exceed this value at any point during plan execution or 

scheduling (rover may be kept awake to prevent it form exceeding this value)
• Having this constraint may product inaccurate result since any energy exceeding Max SOC would not 

be taken into account
• Remove Max SOC constraint while computing guard with nominal schedule offline to 

accurately keep track of energy balance
• Scheduling order: A, B, C1, D, E

E1 is energy level of nominal schedule with no Max Soc constraint after all activities up to and 
including the nominal switch case (A, B, C1) have been scheduled

C1A

E1

13

B

HANDOVER_TIME

Sleep

Sleep

Max SOC
Energy Level
With NO Max SOC
constraint



Sol Wide Guard- Handover SOC Guard
• Guarding against handover SOC
• E2 is energy level in nominal schedule with no Max Soc constraint after all activities in 

the plan have been scheduled
• Energy needed for activities after Bi (in terms of scheduling order, not time) = E1 - E2
• Guard value = MIN_HANDOVER_SOC + (E1 – E2)
• Scheduling order: A, B, C1, D, E

E1

14

HANDOVER_TIME

Energy Level
With NO Max SOC
constraint

C1A BD E

E2

Energy 
used by 
D, E



Guarding against Min SOC Sol Wide Guard

15

B1A DC X

MIN SOC

Energy Timeline

X_Nominal
_t

• Nominal Plan = plan after scheduling with only nominal (minimal) switch 
cases, should schedule all mandatory activities

• X = mandatory activity
• X_nominal_t = time at which activity X is scheduled to end execution in 

Nominal Plan

• Run Monte Carlo of execution with input plan with switch cases and 
guards

• If X was NOT SCHEDULED and longer switch case was scheduled 
before X_nominal_t, then increase energy guard value for longer 
switch case



Monte Carlo for Min SOC Sol Wide Guard

16

MIN SOC

B3A DC X

C ended early

Energy Timeline

Execution run with switch cases and guards:

• X was not scheduled because energy dipped below MINIMIM SOC
• Since B3 was scheduled before X_nominal_t, then increase energy 

guard value for longer switch case

X_Nominal
_t



Multiple Scheduler Invocation (MSI) Switch Groups

• 1) Generate schedule with only the nominal (lowest) switch 
group activity

• 2) During execution, trigger a special process (MSI) that 
reinvokes the scheduler multiple times, once for each level of 
the next switch group, to emulate backtracking.

• Each switch group and its different levels are only attempted 
once.

• When do we start reinvoking the scheduler?

17

A B1 C

B2

B3

Create a nominal schedule with only B1.
During MSI, attempt B3 then B2 once each. If 

both fail, possibly attempt B1 again.

D1



When to Trigger MSI?

• Time Offset:
• Begin Multiple Scheduler Invocations when 

now = switch activity scheduled start – X
• Switch Ready:

• Begin Multiple Scheduler Invocations when
• A switch activity is the next (scheduled start time) in the schedule.
• An activity finished executing

18



Time Offset Trigger

A B1 C

now

Time Offset

B2B3 C

If B2 and C are both scheduled (and no handover 
constraints are violated), the process is finished.
If not, then B1 is attempted.

19



Switch Ready Trigger (SWRE)

A B1 C

now

B2B3 C

If an elevated switch group is able to be scheduled without 
bumping out any other mandatory activities or violating 
handover constraints, then the process completes.

If an elevated switch group isn’t able to be scheduled without 
violating any of the above, attempt the next lower switch group 
activity.

A B1 C

20



Spacing Between MSI Invocations

• Choose to reschedule as soon as possible after the most 
recent MSI invocation

• Risks overconsumption of CPU if scheduler is invoked too 
frequently 

• May need to use throttling- imposes a minimum time delay 
between invocations

• Other option- reschedule at evenly split fixed cadence (future 
work)

21



How do we space out the 
rescheduling attempts during 

MSI?

22



MSI Invocation Spacing

A C1B

Start MSI and begin 
rescheduling

Time Offset

23



MSI Invocation Spacing (Fixed Cadence)

A C1B

Time Offset

Reschedule at an evenly split Fixed Cadence. If the 
offset is large enough, no throttling will be required.

Tsc TscTsc

24



MSI Invocation Spacing (Earliest Possible w/ 
Throttling)

A C1B

Time Offset

Reschedule as early as possible and use throttling to 
prevent overconsumption of the CPU.

Tsc TscTsc

25



Problem- Rescheduling after MSI but before SG 
is committed

A C1B

Time Offset

Start MSI and 
begin rescheduling

26

now

C3

MSI 
successfully 
elevates C1 

to C3

B

B ends early 
and triggers 
rescheduling

Tsc

Tsc

C1

C1 gets 
rescheduled and 

overwrites C3

After MSI, there may be events that trigger rescheduling before the switch 
case is committed- scheduler must know which level switch case to consider



Solution 1)- Reschedule with Elevated Switch 
Group

A C1B

Time Offset

Start MSI and 
begin rescheduling

27

now

C3

MSI 
sucessfully
elevates C1 

to C3

B

B ends early 
and triggers 
rescheduling

Tsc

Tsc

C3

C3 is rescheduled 
earlier. 

Is there potential that 
C3 could cause 

conflicts for future 
mandatory activities?



Solution 2) Disable Rescheduling until SG is 
committed

A C1B

Time Offset

Start MSI and 
begin rescheduling

28

now

C3

MSI 
sucessfully
elevates C1 

to C3

B

B ends early but 
rescheduling is 

disabled

Tsc

Tsc
Idle Time

C3 remains, but ther
is potentially idle 

time



How to deal with a committed switch group activity?

A B1 C

now

In some situations, the next activity may become committed 
before (or during) multiple scheduler invocations.

A

Commit Window

SWRE triggers 
MSI and B1 is 

committed

B1 was scheduled to 
start before MSI 

completed 29



How to deal with a committed switch group activity?
(Commit and Give Up)

B1 C

In some situations, the next activity may become committed 
before (or during) multiple scheduler invocations.

A

Commit Window

Commit B1 and do not try to elevate to B3 or B2.

30



How to deal with a committed switch group activity?
(Veto)

B1 C

In some situations, the next activity may become committed 
before (or during) multiple scheduler invocations.

A

Commit Window

Veto B1 and attempt B3 and B2. When an activity is 
vetoed, it is removed from the current schedule.

31



Empirical Results- Inputs

• Use Sol Types
• Sol Types- currently best available data on expected M2020 rover 

operations
• Each sol type contains 20-40 activities
• Each sol type has a different objective (e.g. driving, more drilling, etc.)

• 8 sol types, 10 variants per sol type 
• Each variant has one switch group only, with 3 switch cases

• 20 runs of simulation of execution for each variant
• Use Mars 2020 surrogate scheduler- an implementation of same algorithm as Mars 

2020 onboard scheduler but intended for a Linux workstation environment
• Activities end on average 10% early

• Want to determine which methods result 1) scheduling all mandatory 
activities, 2) highest switch group score 32

SwitchGroup = 

Activity A = x sec

Activity B = 2x sec

Activity C = 4x sec 



Scoring 

• Mandatory Activity Score
• Each mandatory activity that is scheduled, including whichever 

switch case is scheduled contributes 1 point to the mandatory 
score

• Switch Group Score
• A successfully scheduled switch case that is 4x as long as 

nominal contributes 1 point to switch group score
• A successfully scheduled switch case that is 2x as long as 

nominal contributes 0.5 point to switch group score
• If only the nominal switch case is able to be scheduled, it doess

not contribute to switch case score
• Scheduling a mandatory activity is of much higher importance 

than scheduling any number of switch cases

33



• Incoming SOC- energy level at 
start of schedule

• Also compare to what happens 
if we always elevate to highest 
or second highest switch case

• Elevating to highest 
performs worst

• Guard methods and MSI 
methods that keep nominal 
switch case committed if it 
becomes committed during 
MSI result in all mandatory 
activities scheduled

• Vetoing risks activities will not 
be able to be scheduled in a 
future invocation

Mandatory Score vs Incoming SOC 



• Incoming SOC- energy level at start 
of schedule

• Upper bound for theoretical 
maximum switch group score given 
by omniscient scheduler- has prior 
knowledge of execution durations 
and is aware of how many resources 
will be available to schedule higher 
level switch cases

• Sol wide guard and MSI with Time 
Offset and Commit result in 
highest switch group score

• Fixed Point results in low switch 
group score because it checks 
against a SOC constraint at a 
specific time regardless of what 
happens during execution vs when 
scheduler I actually trying to 
schedule switch case (as in Sol 
Wide guard)

• The less time there is to complete 
MSI invocations, the more likely for 
switch case to become committed-
why Switch Ready performs worse

Switch Group Score vs Incoming SOC 



jpl.nasa.gov

Future Work

• Analysis of start time windows and dependencies to 
determine where an activity could be placed without 
blocking other mandatory activities

• Support for multiple switch groups instead of just one
• Binary search to compute guard for Minimum SSOC Sol 

Wide Guard
• Further study of MSI

• Start MSI if activity ends early by at least some amount
• Evenly space MSI invocations

• Extend approaches to data volume

36



jpl.nasa.gov

Conclusions

• Guard methods and MSI methods that keep nominal switch 
case committed if it becomes committed during MSI result 
in all activities scheduled

• Sol wide guard and MSI with Time Offset and Commit 
result in highest switch group score

37





BACKUP SLIDES

39


